Integrated Monitoring Approach for Seamless Service Provisioning in Federated Clouds

Attila Kertész, Gabor Kecskemeti, Marc Oriol, Attila Csaba Marosi, Xavier Franch and Jordi Marco

20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing
Feb 17, 2012.

www.s-cube-network.eu
Introduction

- Highly dynamic service environments require a novel infrastructure to handle on demand deployment and decommission of service instances.
- **Cloud Computing** allows:
 - Outsourcing these dynamic environments
 - Constructing extensible service-based applications
 - Utilizes the latest achievements of Grid Computing, Service-oriented computing, business-processes and virtualization
- Virtual Appliances encapsulate metadata with a complete system (OS, libraries and applications)
- Infrastructure cloud systems (IaaS) allow to instantiate VA’s on their virtualized resources: Virtual Machines
- Several public and private IaaS systems co-exist
 - Only a “Federated Cloud” could offer the different capabilities as a whole
Federated Cloud Management (FCM)

- An autonomic resource management solution
- Provides an entry point to a cloud federation
- Provides transparent service execution for users
- Following challenges are considered:
 - Varying load of user requests
 - Enabling virtualized management of applications
 - Establishing interoperability and provider selection
 - Minimizing Cloud usage costs
- Builds on *meta-brokering, cloud brokering* and automated *on-demand service deployment*
- Layered architecture
 - Meta-broker
 - Cloud Brokers
 - Cloud infrastructure providers
FCM Architecture: overview

- **Top-level brokering**
- **Autonomously manage the interconnected cloud infrastructures**
- **Forms a federation with the help of Cloud Brokers**
FCM Architecture: overview

- Manages **VA distribution** among the various cloud infrastructures
- Automated federation-wide repository content management
- Offers current VA availability and estimates its future deployment
FCM Architecture: overview

- Interacts with a single IaaS system
- Manages resources
- Schedules service calls
Generic Meta-Broker Service

• BPDL – Broker Property Description Language
 • Cloud Brokers are described

• Basic and aggregated dynamic properties
 • Estimated availability time for a specific VA in the native repository
 • Average VA deployment time

• Scheduling filters and ranks Cloud Brokers
Cloud Broker

- Dynamic requirements may be specified with a service call
- Treated as a new VA type
- Some IaaS systems offer predefined classes of resources
 - Resource class selected with at least the required resources
Cloud Broker: Scheduling of service calls

- The Cloud Broker performs *scheduling* of service calls to resources (VMs)
 - Based on the monitoring information gathered

- May **decide** to start new resources based on:
 - The number of running VM’s to handle the service call
 - The number of waiting service calls in the Service call queue
 - The average execution time of service calls
 - The average deployment time of VA’s
 - SLA constraints

- VM decommission
 - Takes into account the “billing period”
Service monitoring with SALMon

- Service Level Agreement Monitor (SALMon): designed for monitoring QoS of software services
- Capable of passive monitoring and testing purposes
- Supports any type of service technology (SOAP-based WS, RESTful services, etc.)
- It is itself an SBA with two main components:
 - Monitor: retrieves values of quality metrics with the help of Measure Instruments
 - Analyzer: evaluates conditions over these metrics
- It is suitable for monitoring running services in Cloud infrastructures
The SALMon service monitoring framework

- Service user
 - uses
 - << Component >> Proxy Service
 - uses
 - << Component >> Measure Instrument
 - uses
 - << Service >> Monitor
 - Create and Manage
 - << Service >> Analyzer
 - << DSMS >> Data Base
 - Query
 - Insert
 - *
 - Manage
 - << Service >> Authentication and Authorization
 - Check
 - *
 - SOA System
 - Service 1
 - Service 2
 - Service 3
 - Service 4
Integrated Monitoring Approach for Seamless Service Provisioning (IMA4SSP)
IMA4SSP details

• We have integrated SALMon to enable performance-driven service executions in Cloud federations

• Metrics related to service methods may be defined to monitor service operations

• Metric values are regularly refreshed in the Generic Service Registry (GSR) of the architecture

• Finally information stored in the GSR are used by the GMBS for Cloud infrastructure selection based on service reliability
Enhanced monitoring with M3S

- SALMon reports service metrics to a DB regularly checked by the meta-broker.
- The Minimal Metric Monitoring Service (M3S) is used to monitor:
 - Availability;
 - Computing capability;
 - and data transfer reliability.
Mimimizing monitoring costs

• Keeping the monitoring VMs in the Cloud can be costly

• To reduce these costs, the IS Agent component of GMBS has been extended to initiate the deployment and decommission of these VMs

• The monitored metric values have timestamps

• When the retrieved metric value of a service is outdated, the IS Agent contacts the responsible Cloud Broker to initiates a M3S and SALMon VM deployment

• When metric values with new timestamps are read from the registry, the IS Agent contacts the CB again, to decommission the monitoring VMs
Conclusions

- We have designed a Federated Cloud Management solution that acts as an entry point to cloud federations
 - Meta-brokering, cloud brokering and on-demand service deployment
- We have shown how Cloud Brokers manage the number and location of VMs for the various service requests
- We have extended FCM with enhanced monitoring capabilities with the SALMon framework, and created the IMA4SSP architecture
- We have shown a simplified version that uses the M3S reference service to monitor infrastructure reliability
- Our future work targets performance measurements in Cloud federations
Thank You for your attention!

Questions?

https://www.lpds.sztaki.hu/CloudResearch