Contents

1 Introduction

2 Parallel Force Calculation

3 Interaction List Compression
Introduction

- Short ranged particle simulation (Lennard Jones Potential)
- Cutoff-radius to specify interaction partners of a particle

for $i = 1$ to N do
 foreach $j \in interaction_list(i)$ do
 interact((i, j))

procedure interact((i, j))
 $r =$ distance vector between P_i and P_j
 ...
 if $|r| < r_{cut}$ then
 $t_{force} =$ compute_force(P_i, P_j, r)
 force update P_i
 force update P_j

- Interaction list stores particle interactions
- Interaction list is computed and used for several time steps (not shown here)
- To handle particles moving into Cutoff-Radius, it is slightly increased
Motivation

- Interaction lists are part of lot of professional simulation codes
- Interaction lists may require a large amount of memory, sometimes more than particle data like positions and forces
- Caching interaction list not possible (larger than cache, each element read only once)
- Loading the interaction list requires a large amount of memory bandwidth possibly shared by several cores
- Size of simulation limited by particle data and interaction list data

→ Compressing interaction list will reduce memory consumption and increase simulation speed
Interaction Matrix Σ

- Divide simulation volume into $N_1 \times N_2 \times N_3$ subvolumes B_u, $1 \leq u \leq N_1 \cdot N_2 \cdot N_3$
- Partitioning of interaction list according to subvolumes where particles reside creates interaction matrix Σ
- Entry S_{uv} from Σ is the set of interactions between particles residing in subvolume B_u and B_v, that were originally located in the interaction list
- Σ has only nonempty entries above the main diagonal
- Number of interactions in S_{uv} varies; main diagonal elements have highest number of interactions
- In the parallel algorithm all interactions in S_{uv} are computed by one thread; computing S_{uv} is a task
Recursive Mapping of Tasks to Cores

- Set of available cores T_0 and Σ are both split recursively
 - T_0 is split into T_1 and T_2
 - Σ is split into S_1, S_2, S_3, and S_4
 - S_1 (S_4) is computed recursively by the cores in T_1 (T_2)
 - If S_3 is below main diagonal it is not computed and S_2 is computed by all threads in T_0
 - Else (S_3 is above main diagonal) S_2 (S_3) is computed by cores in T_2 (T_1)

- Example on right shows a mapping of tasks (sets of interactions) to 16 cores
Recursive Mapping of Tasks to Cores

- Set of available cores T_0 and Σ are both split recursively
 - T_0 is split into T_1 and T_2
 - Σ is split into S_1, S_2, S_3, and S_4
 - S_1 (S_4) is computed recursively by the cores in T_1 (T_2)
 - If S_3 is below main diagonal it is not computed and S_2 is computed by all threads in T_0
 - Else (S_3 is above main diagonal) S_2 (S_3) is computed by cores in T_2 (T_1)
- Example on right shows a mapping of tasks (sets of interactions) to 16 cores
Recursive Mapping of Tasks to Cores

- Set of available cores T_0 and Σ are both split recursively
 - T_0 is split into T_1 and T_2
 - Σ is split into S_1, S_2, S_3, and S_4
 - S_1 (S_4) is computed recursively by the cores in T_1 (T_2)
 - If S_3 is below main diagonal it is not computed and S_2 is computed by all threads in T_0
 - Else (S_3 is above main diagonal) S_2 (S_3) is computed by cores in T_2 (T_1)
- Example on right shows a mapping of tasks (sets of interactions) to 16 cores
Recursive Mapping of Tasks to Cores

- Set of available cores T_0 and Σ are both split recursively
 - T_0 is split into T_1 and T_2
 - Σ is split into S_1, S_2, S_3, and S_4
 - S_1 (S_4) is computed recursively by the cores in T_1 (T_2)
 - If S_3 is below main diagonal it is not computed and S_2 is computed by all threads in T_0
 - Else (S_3 is above main diagonal) S_2 (S_3) is computed by cores in T_2 (T_1)

- Example on right shows a mapping of tasks (sets of interactions) to 16 cores
Recursive Mapping of Tasks to Cores

- Set of available cores T_0 and Σ are both split recursively
 - T_0 is split into T_1 and T_2
 - Σ is split into S_1, S_2, S_3, and S_4
 - S_1 (S_4) is computed recursively by the cores
 in T_1 (T_2)
 - If S_3 is below main diagonal it is not computed
 and S_2 is computed by all threads in T_0
 - Else (S_3 is above main diagonal) S_2 (S_3) is computed
 by cores in T_2 (T_1)

- Example on right shows a mapping of tasks
 (sets of interactions) to 16 cores
Recursive Mapping of Tasks to Cores

- Set of available cores T_0 and Σ are both split recursively
 - T_0 is split into T_1 and T_2
 - Σ is split into S_1, S_2, S_3, and S_4
 - S_1 (S_4) is computed recursively by the cores in T_1 (T_2)
 - If S_3 is below main diagonal it is not computed and S_2 is computed by all threads in T_0
 - Else (S_3 is above main diagonal) S_2 (S_3) is computed by cores in T_2 (T_1)

- Example on right shows a mapping of tasks (sets of interactions) to 16 cores
\(N = 100000 \)

- Highest speedup 11.1 (Egypt), 12.6 (Barcelona) and 7.6 (Clovertown)
Overview over Interaction List Compression Techniques

Four considered techniques:

1. **Redundant Computations**
 - Ignores interaction lists when computing a set S_{uv}

2. **Hybrid Technique**
 - Uses interaction lists for some tasks S_{uv}
 - The first technique is used on the others

3. **Refinement Technique**
 - Orders particle data within a subvolume along a space filling curve
 - Uses particle position along the space filling curve to filter out interactions from the interaction list
 - Restores the interactions, when computing the task S_{uv}

4. **Variable Coding of interactions**
 - Compresses the interaction partners of each particle in a subvolume with a variable byte code
Redundant Computations Technique

- Parallel algorithm remains unmodified only computation of interactions of a set S_{uv} is modified:

Original computation:

```
foreach \((i, j) \in S_{uv}\) interact\(((i, j))\)
```

Redundant Computation Technique:

```
foreach \(i \in B_u\)
    foreach \(j \in B_v\) interact\(((i, j))\)
```

- Advantage:
 - No interaction list is required \rightarrow reduced storage
 - The information which particle is in which box, which has to be loaded \rightarrow can be cached

- Disadvantage:
 - More interactions considered \rightarrow requires filtering (cutoff radius)
 \rightarrow redundant computations
Hybrid Technique

- Uses Interaction List Technique for sparse tasks and Redundant Computations Technique for dense tasks.
- Uses ratio ϵ of number of interactions in S_{uv} divided by number of maximum possible interactions N_{uv} between sets B_u and B_v:

$$\epsilon = \frac{|S_{uv}|}{N_{uv}}$$

$$N_{uv} = \begin{cases}
\frac{|B_u| \cdot (|B_u| - 1)}{2}, & \text{if } u = v \\
|B_u| \cdot |B_v|, & \text{otherwise}
\end{cases}$$

- Choose ϵ_0, $0 \leq \epsilon_0 \leq 1$ constant for computation of Σ.
- For each task S_{uv} calculate ϵ and decide:
 - If $\epsilon > \epsilon_0$ sparse task \rightarrow use Interaction List
 - Else dense task \rightarrow use Redundant Computations Technique
Decomposition into $16 \times 16 \times 16$ subvolumes

$N = 100000$ particles

- $\epsilon_0 = 1 \rightarrow$ all tasks S_{uv} use interaction list \rightarrow runtime of original implementation
- $\epsilon_0 = 0 \rightarrow$ all tasks S_{uv} do not use interaction list
- At $\epsilon_0 = 0$ runtime increase through redundant computations
Refinement Technique

- Sets S_{uv}, with $u = v$, have highest density
 \rightarrow compression has highest benefit

- Approach:
 - Refine each subvolume B_u into $\tilde{N}_1 \times \tilde{N}_2 \times \tilde{N}_3$ subvolumes
 - Sort particles within B_u according to a space filling curve (Z-Morton)
 \rightarrow near distant particles are stored in consecutive memory positions
 - In computation the interaction list: Do not store the interaction between particle P_i and P_j, if the distance of the memory position indices between P_i and P_j is smaller than a constant l_z
 - Replace code for computing task S_{uv}:

```cpp
if u = v then
  for $g_1 = 0$ to $|B_u| - 1$ do
    for $g_2 = g_1 + 1$ to $\min(g_1 + l_z, |B_u| - 1)$ do
      interact(first($B_u$) + $g_1$, first($B_u$) + $g_2$)

Computed remaining interactions with interaction list
```
Variable Coding of Interactions

After constructing the interaction list:
For each particle P_i from B_{uv} and for each set S_{uv}
- Sort interaction partners of P_i
- Calculate difference sequence of the sorted sequence
- Encode the sequence with a variable byte code of 1 to 5 Bytes

In the parallel calculation:
- Decode the variable byte code sequence and immediately use the elements for force calculation
Runtime Comparision of the Techniques

<table>
<thead>
<tr>
<th>Description</th>
<th>Egypt</th>
<th>Barcelona</th>
<th>Clover-town</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig. Implementation</td>
<td>0.096</td>
<td>0.084</td>
<td>0.127</td>
</tr>
<tr>
<td>Redundant Computations</td>
<td>0.477</td>
<td>0.443</td>
<td>0.810</td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.078</td>
<td>0.074</td>
<td>0.127</td>
</tr>
<tr>
<td>Subrefinement</td>
<td>0.081</td>
<td>0.079</td>
<td>0.130</td>
</tr>
<tr>
<td>Variable Coding</td>
<td>0.096</td>
<td>0.086</td>
<td>0.134</td>
</tr>
</tbody>
</table>

- 19% smaller runtime on Barcelona and 12% smaller runtime on system Egypt for Hybrid Technique compared to original implementation.
- 16% smaller runtime on Barcelona and 6% smaller runtime on Egypt for Subrefinement Technique compared to original implementation.
Compression versus Runtime

Compression vs. Runtime Clovertown

- Redundant
- Hybrid
- Refinement
- Variable Coding

Runtime [s] vs. Compression in Percent
Conclusion

- Compared four different techniques for reducing the size of the interaction list in a parallel algorithm.
- Interaction list compression techniques can reduce the storage requirements for storing the interaction lists.
- Parallel algorithm with compression techniques can reach the same runtime or even decrease the runtime of the parallel computation.
Thanks for your attention!

Questions?
Multicore Systems Used for the Experiments

<table>
<thead>
<tr>
<th>Code Name</th>
<th>Egypt</th>
<th>Barcelona</th>
<th>Clovertown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>AMD Opteron 870</td>
<td>AMD Opteron 8347</td>
<td>Intel XEON E5345</td>
</tr>
<tr>
<td>Frequency</td>
<td>2.0 GHz</td>
<td>1.9 GHz</td>
<td>2.33 GHz</td>
</tr>
<tr>
<td>GFlop/s per Core</td>
<td>4</td>
<td>7.6</td>
<td>9.32</td>
</tr>
<tr>
<td>Total GFlop/s</td>
<td>64</td>
<td>121.6</td>
<td>74.56</td>
</tr>
<tr>
<td>Number of CPUs</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cores per CPU</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total Cores</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Memory Architecture</td>
<td>Numa</td>
<td>Numa</td>
<td>Bus</td>
</tr>
<tr>
<td>L1-Cache</td>
<td>64KByte</td>
<td>64KByte</td>
<td>32KByte</td>
</tr>
<tr>
<td>L2-Cache</td>
<td>1MByte</td>
<td>512KByte</td>
<td>4MByte per 2 Cores</td>
</tr>
<tr>
<td>L3-Cache</td>
<td></td>
<td>2MByte per 4 Cores</td>
<td></td>
</tr>
</tbody>
</table>

16.2.2012 • Michael Schwind
Runtime Parallel Algorithm

![Graph showing runtime vs. number of cores for different platforms: Egypt, Barcelona, and Clovertown.](image)
L1-Misses of the Hybrid Technique depending on ϵ_0

![Graph showing L1-Misses vs ϵ_0 for Egypt, Barcelona, and Clovertown.](image)
L2-Misses of the Hybrid Technique depending on ϵ_0

![Graph showing L2-Misses vs epsilon0 for different locations: Egypt, Barcelona, Clovertown. The graph illustrates the increase in L2-Misses as epsilon0 increases.]
TLB-Misses of the Hybrid Technique depending on ϵ_0

![Graph showing TLB-Misses for different ϵ_0 values for Egypt, Barcelona, and Clovertown.](image)

- **TLB-Misses vs. ϵ_0**
- **Axes:** TLB-Misses on the y-axis and ϵ_0 on the x-axis.
- **Lines:**
 - Red solid line for Egypt.
 - Green dashed line for Barcelona.
 - Blue dotted line for Clovertown.

Legend:
- Egypt (Red) *
- Barcelona (Green) X
- Clovertown (Blue) *

Graph Notes:
- The graph shows an increasing trend in TLB-Misses as ϵ_0 increases for all systems.

References:
- Michael Schwind (16.2.2012)