Context Map for Navigating the
Physical World

Vaskar Raychoudhury, Jiannong Cao,
Weiping Zhu, Ajay D. Kshemkalyani

Outline

* Context Map

* Our Research Focus

* Problem Assumption and Problem Definition
* Solution

* Simulations

* Conclusion

Smart Objects

* Smart objects are produced as a result of
advances in

embedded sensing technologies,
wireless communications, and

mobile computing

* Smart objects are physical objects

capable of sensing, computing, and communication

Context Links

* Smart objects can be contextually inter-related
Contexts can be location, ownership, social connections, etc

Context can be static or dynamic depending on whether their
value changes with time

e.g. if Mr. X and Mr. Y are present in the same location L, then
there is a link between them with respect to the location context

If after some time, Mr. X and Mr. Y move away from each other,
their contextual link may not exist any more

* Context links form a context map

Context Map

* A context map represents a global snapshot of the
physical world

* A global snapshot should contain one local state from
each participating entity
* Using a common time axis, a global state can be specified

as a state occurring at the same time instant in each entity (or,
concurrent), or

in terms of specific temporal relationships among the local states
(or, relative)

* The global snapshot is also called an event in this paper.

Example Scenario

* Tom enters his office PQ821 at 9:00 am with a laptop
borrowed from the office IT services for presenting at a
meeting scheduled at 11:00 am.

* He calls his project partner Bob who arrives at 9:45 am to
take a look at his PPT slides.

* Leaving Bob there Tom goes to the canteen at 10:30 am
for breakfast and finally enters meeting room PQ304 at
10:50 am.

* He finds that Bob has arrived there at 10:45 am and has
set up the laptop for presentation.

Timeline for Example Scenario

P, Loc = PQ821 - P,.Loc = PQ304

TOM (P;)
| | | | | | | 3
9:00 ' 1000 ' 1100 ' 12:00
BOB (P2) | | | | | |
9:00 ' 10'00 ' 11'00 ' 12:00
Ps;.Loc = PQ821
Laptop | | | | | |

(P3) 9:00 ' 10:00 ' 11.00 ' 12:00

Context Map for Example
Scenario

% % % &
Lap- Lap- Lap-
top top top

(a) 9:00-9:45 AM (b) 9:45-10:15 AM (c) 10:15-10:30 AM
’ \’ Q ,
\50)0\ \‘?0\

Lap- Lap- Lap-
top top top

(d) 10:30-10:45 AM (€) 10:45-10:50 AM (f) 10:50 AM-12:00 Noon

Focus of Our Research

* In this paper, we have studied how to build the context
map based on concurrent event detection

* We classified pervasive computing applications based
on
event reporting delay, and
the event processing interval at the central server

* We proposed two online centralized algorithms for
concurrent event detection in
An instantaneous manner (when the event happens), and

A periodic manner (detecting batch of events occurring in a
time period)

Challenging Issues

* Consistent and timely maintenance of context
map is non-trivial due to

Dynamic and asynchronous nature of pervasive
environment

Incorrect detection of contextual events

Unreliability of wireless communication

Assumptions

* Various smart entities are connected wirelessly and
asynchronous message passing

* Each entity has a set of static or dynamic context
attributes

* Changes in those context attributes generate series
of linearly ordered set of discrete events E; by the
execution of a process P; at each entity

* The time duration between two successive events at
a process identifies an interval

* Synchronized physical clocks are available among all
smart objects

System Model

Processes send event intervals to a central server, PO,
either periodically or

following a trigger-based approach

A user queries for concurrent events which are specified
through a predicate @, such that

@ is explicitly defined on attribute value intervals that are
implicitly related using concurrent timing relationships

Event streams are “fused” at PO and examined to detect ®©
The context map is updated based on the truth value of @,

Types of Predicates

* Relational Predicates

can be true for any values of the context attributes, and cannot
be evaluated locally

* Conjunctive Predicates

must be expressible in conjunctive form, i.e., as a conjunct over
the local predicates @,, where timing relations between intervals
are included in the conjunction operation At

E.g. Conjunctive predicate: (Tom.Loc = PQ821 & Bob.Loc = PQ821
& Laptop.Loc = PQ821).

can be locally evaluated

* This work considers only conjunctive predicate based
gueries

Problem Definition

red

* Problem Conc,
Given a set of processes P={P,, P,, ..., Pp},, such that,

each process has a set of k attributes, A={A,, A,, ..., A},

each attribute can take up any value from a value set for the
attribute, and

the value of an attribute may change over time
Assume that

a predicate O is specified over (P.a;, VP,EP Va,EA)
Identify a set of intervals I ={l; I,; ...}, where |;is
from process Pi,

such that there is some time instants within all these intervals
at which @ is true

Algorithms for Conc,4

* We have proposed following two online
algorithms

Algorithm for Trigger-based Conc_._, Detection

pred

Algorithm for Periodic Conc_ ., Detection

pred
* Our algorithms consider asynchronous event

reporting (bounded by A)

Data Structure for Conc .

* The central server maintains two different queues

One single queue of events (Q)

holds a list of incoming events sorted with respect to t,

A number of p*a queues, called interval queues (Q [i,
J1)
captures the intervals generated by each attribute of each
process
each such queue can hold at most € intervals, where

¢ is the maximum number of intervals per attribute per process
(for trigger-based predicate detection), or

per attribute per epoch (for periodic predicate detection)

Algorithm for Trigger-based Conc
Detection

* When a process identifies a change in value of a context attribute,
it generates an event and sends it to the server

pred

* The algorithm assumes that when a new event occurs the previous
value of the context attribute, which was holding for a time
interval, changes

* So, the previous time interval gets closed while a new interval
starts which will continue until the next event trigger occurs

* Worst case time complexity (WCTC):
Enqueuing incoming events in the sorted Q => log(p*a*¢) time
Pair-wise comparison of the heads of Q [i, j] => (p*a)*(p*a-1)/2 time
Predicate evaluation => O(f(®)) where @ is the predicate function

Total WCTC => O((p*a*§)(log(p*a*§)+O(f(®)+(p*a)*(p*a - 1)/2)))

Algorithm for Trigger-based Conc
Detection (Cont'd)

* The algorithm works in the following way

* Incoming events at the server are enqueued in a ordered event queue (Q)

pred

* It then starts a timer of A to capture all delayed events which occurred
within (t—A4, t.)

* When the timer expires, the server transfers the event from the Q to
Q [i, j], removing the previous head of Q [j, j]

* So, the interval for the previous event is closed and a new interval is
started for the attribute A; of process P,. Thus Q [, j] always has at most
one element at any time for all i and

* After a new interval is started at a Q [j, j], the attribute values of the
intervals at the heads of all Q [j, j] are evaluated

(i) whether any pair has matching attribute-values in which case a contextual link
is added, and

(ii) whether the predicate O is satisfied

Algorithm for Periodic Conc 4
Detection

* The algorithm periodically evaluates concurrent event
considering asynchrony in event reporting

* All events which occur during an epoch of period t (i.e.,
for events with t.<t) are captured considering a maximum
event reporting delay of A, and stored in the interval
queue Q [j, j].

* If an event arrives during (t+A) and t >t, then it is made

to wait in the event queue, Q, before finally placing it in
Q [i, j]. The evaluation is pended for the current period.

Algorithm for Periodic Conc
Detection (Cont'd)

* When an epoch ends at (t+A), the server temporarily
closes the last queued intervals in Q [/, j] with the current
time stamp, t, and then evaluates the attribute values of
the intervals at the heads of all Q [/, j] to detect

(i) whether any pair has matching attribute-values in which case a
contextual link is added, and

pred

(ii) whether the predicate O is satisfied

* After the first round of evaluation, some intervals are
deleted from the heads of some of the Q [j, j] and another
round of comparison is carried out among the updated
heads of Q [j, j]

This process is repeated until heads of all Q [/, j] are the latest
intervals for the current epoch

Algorithm for Periodic Conc
Detection (Cont'd)

pred

* Analysis of worst case time complexity
The function ENQUEUE(e) which
Enqueuing incoming events => O(p*a)
The repeat loop => O(p*a*(&-1))
Pair-wise comparison of the heads of Q [i, j] => (p*a)*(p*a - 1)/2
Predicate evaluation => O(f(®)) where @ is the predicate func.
Detecting and removing time intervals => O(p*a)

* Worst case time complexity of the algorithm
O((p*a*(&-1))(p*a + O(f(®)+(p*a)*(p*a - 1)/2)))

Performance Evaluation

* Simulation setup
Every node has an id and a location attribute in the 2D simulation
territory

Node O acts as the central server which keeps track of the
location of other nodes and constructs the context graph

The territory is divided into 3x3 square grids which are
considered as enclosed physical areas, like rooms.

Nodes in the same grid are considered as co-located and they are
linked with a co-location relation

When nodes moves across grids, the co-location relations change
to trigger an event and the context map is updated accordingly

Performance Evaluation

* Simulation parameters

Parameters Values
Number of nodes, (N) 50, 100, 150, 200
Territory scale (n¥) 1500
Mean link delay (ms) 5
Max link delay (ms) 100
Transmission radius (m) 100
Routing Policy L east hops
Mobility model Random Way point
Node speed V (in nvs) 5,10
Pause time (ms) 10, 50

Period of Predicate Evaluation (ms) 100

Performance

100
90
SAREE /,;;_,,;k/:
T
70 7 o
60 —4—Algo1@5m/s —li—Algo1@10m/s
50
20 == Algo2@5m/s Algo2@10m/s
30
” —ﬁﬁ:ﬂ:—":———:‘
10 80
0 . . . ' 70 v; 3% X
50 100 150 200 s e
60 - — pa—
. 50
N vs. UD (Pause time = 10 ms) ——Algo1@5m/s —m—Algol@10m/s
. . 40
Higher node speed ensures higher UD ——Algo2@5m/s ——Algo2@10m/s

30

20 .: ’

UD (Update Delay): It is the average 10
time delay in milliseconds betweenthe °~ W | W W
t!me a node changes Ic?catlon and the N vs. UD (Pause time = 50 ms)

time the context map is updated. Higher pause time ensures lower UD

Conclusion

* In this paper

We introduce the context map to track the image of
the physical world, so that queries can be run against
the context map

We give instances of real-world problems in pervasive
environments where complex timing relations are
involved in queries on the context map

We show how to maintain the context map by
simulation and testbed experiments

Thank You!

Email: vaskar@ieee.org

csweizhu@comp.polyu.edu.hk

Classification of Event Detection

Techniques
[entheponngoamy

- Asynchronous (bounded Instantaneous (A = 0)
by 4)

Trigger- Highway accident Safety-critical applications,
based detection, Damage (Air or Nuclear accident
detection in long distance detection, Tsunami
oil pipelines, Undersea detection), Smart homes,
cables, etc office, etc
Periodic Wild-life / Habitat / Structure health

(Batch) Volcano monitoring monitoring

Data Structure for Conc .

* Every event e is identified by a quadruple (P, A, Val,
t.), where
P is the identifier of process i,
A;is the attribute j of P,
Val is the value of attribute A, and
t. is the timestamp of occurrence of e

Data Structure for Conc .

* A contextual link is represented with a quadruple (A, Val,
t, t;), where

A;is a context attribute and Val is the value of A; during the
time interval which started at time t; and continued till ¢

* Contextual links are created between a pair of processes

iff a context attribute of one process is related to that of the
other process through some user define function, f.

Concurrent and Relative Events

* Concurrent Event

concurrency event in terms of the location context of Tom, Bob
and the Laptop : (Tom.Loc = Bob.Loc = Laptop.Loc)

* Relative Event

Consider a scenario where, after Tom enters his office, he has
invited both Bob and Alex to take a look at his slides. After that
they may go to the meeting together or separately.

So, the relative event in this example can be specified as - Bob
and Alex enter Tom’s office AFTER Tom and they leave BEFORE
Tom

