
Context Map for Navigating the

Physical World

Vaskar Raychoudhury, Jiannong Cao,

Weiping Zhu, Ajay D. Kshemkalyani

Outline

• Context Map

• Our Research Focus

• Problem Assumption and Problem Definition

• Solution

• Simulations

• Conclusion

Smart Objects

• Smart objects are produced as a result of

advances in

• embedded sensing technologies,

• wireless communications, and

• mobile computing

• Smart objects are physical objects

• capable of sensing, computing, and communication

Context Links

• Smart objects can be contextually inter-related

• Contexts can be location, ownership, social connections, etc

• Context can be static or dynamic depending on whether their

value changes with time

• e.g. if Mr. X and Mr. Y are present in the same location L, then

there is a link between them with respect to the location context

• If after some time, Mr. X and Mr. Y move away from each other,

their contextual link may not exist any more

• Context links form a context map

Context Map

• A context map represents a global snapshot of the

physical world

• A global snapshot should contain one local state from

each participating entity

• Using a common time axis, a global state can be specified

• as a state occurring at the same time instant in each entity (or,

concurrent), or

• in terms of specific temporal relationships among the local states

(or, relative)

• The global snapshot is also called an event in this paper.

Example Scenario

• Tom enters his office PQ821 at 9:00 am with a laptop

borrowed from the office IT services for presenting at a

meeting scheduled at 11:00 am.

• He calls his project partner Bob who arrives at 9:45 am to

take a look at his PPT slides.

• Leaving Bob there Tom goes to the canteen at 10:30 am

for breakfast and finally enters meeting room PQ304 at

10:50 am.

• He finds that Bob has arrived there at 10:45 am and has

set up the laptop for presentation.

Timeline for Example Scenario

Context Map for Example

Scenario

Tom

Lap-

top

Bob

user
loc

(a) 9:00-9:45 AM

Tom

Lap-

top

Bob

user
loc

(b) 9:45-10:15 AM

loc

lo
c

Tom

Lap-

top

Bob

us
er

loc

(c) 10:15-10:30 AM

loc

lo
c

Tom

Lap-

top

Bob

us
er

(d) 10:30-10:45 AM

lo
c

Tom

Lap-

top

Bob

us
er

(e) 10:45-10:50 AM

lo
c

(f) 10:50 AM-12:00 Noon

Tom

Lap-

top

Bob

user
loc

loc

lo
c

Focus of Our Research

• In this paper, we have studied how to build the context

map based on concurrent event detection

• We classified pervasive computing applications based

on

• event reporting delay, and

• the event processing interval at the central server

• We proposed two online centralized algorithms for

concurrent event detection in

• An instantaneous manner (when the event happens), and

• A periodic manner (detecting batch of events occurring in a

time period)

Challenging Issues

• Consistent and timely maintenance of context

map is non-trivial due to

• Dynamic and asynchronous nature of pervasive

environment

• Incorrect detection of contextual events

• Unreliability of wireless communication

Assumptions

• Various smart entities are connected wirelessly and
asynchronous message passing

• Each entity has a set of static or dynamic context
attributes

• Changes in those context attributes generate series
of linearly ordered set of discrete events Ei by the
execution of a process Pi at each entity

• The time duration between two successive events at
a process identifies an interval

• Synchronized physical clocks are available among all
smart objects

System Model

• Processes send event intervals to a central server, P0,

• either periodically or

• following a trigger-based approach

• A user queries for concurrent events which are specified

through a predicate Φ, such that

• Φ is explicitly defined on attribute value intervals that are

implicitly related using concurrent timing relationships

• Event streams are “fused” at P0 and examined to detect Φ

• The context map is updated based on the truth value of Φ,

Types of Predicates

• Relational Predicates

• can be true for any values of the context attributes, and cannot

be evaluated locally

• Conjunctive Predicates

• must be expressible in conjunctive form, i.e., as a conjunct over

the local predicates Φi, where timing relations between intervals

are included in the conjunction operation Λt

• E.g. Conjunctive predicate: (Tom.Loc = PQ821 & Bob.Loc = PQ821

& Laptop.Loc = PQ821).

• can be locally evaluated

• This work considers only conjunctive predicate based

queries

Problem Definition

• Problem Concpred

• Given a set of processes P= {P1, P2, …, Pp},, such that,

• each process has a set of k attributes, A = {A1, A2, …, Aa},

• each attribute can take up any value from a value set for the

attribute, and

• the value of an attribute may change over time

• Assume that

• a predicate Φ is specified over (Pi.aj, ∀Pi∈P ∀aj∈A)

• Identify a set of intervals I = {I1; I2; . . . Ip}, where Ii is

from process Pi,

• such that there is some time instants within all these intervals

at which Φ is true

Algorithms for Concpred

• We have proposed following two online

algorithms

• Algorithm for Trigger-based Concpred Detection

• Algorithm for Periodic Concpred Detection

• Our algorithms consider asynchronous event

reporting (bounded by Δ)

Data Structure for Concpred

• The central server maintains two different queues

• One single queue of events (Q)

• holds a list of incoming events sorted with respect to ts

• A number of p*a queues, called interval queues (Q [i,

j])

• captures the intervals generated by each attribute of each

process

• each such queue can hold at most ξ intervals, where

• ξ is the maximum number of intervals per attribute per process

(for trigger-based predicate detection), or

• per attribute per epoch (for periodic predicate detection)

Algorithm for Trigger-based Concpred

Detection
• When a process identifies a change in value of a context attribute,

it generates an event and sends it to the server

• The algorithm assumes that when a new event occurs the previous
value of the context attribute, which was holding for a time
interval, changes

• So, the previous time interval gets closed while a new interval
starts which will continue until the next event trigger occurs

• Worst case time complexity (WCTC):

• Enqueuing incoming events in the sorted Q => log(p*a*ξ) time

• Pair-wise comparison of the heads of Q [i, j] => (p*a)*(p*a-1)/2 time

• Predicate evaluation => O(f(Φ)) where Φ is the predicate function

• Total WCTC => O((p*a*ξ)(log(p*a*ξ)+O(f(Φ)+(p*a)*(p*a - 1)/2)))

Algorithm for Trigger-based Concpred

Detection (Cont’d)

• The algorithm works in the following way

• Incoming events at the server are enqueued in a ordered event queue (Q)

• It then starts a timer of Δ to capture all delayed events which occurred

within (ts–Δ, ts)

• When the timer expires, the server transfers the event from the Q to

Q [i, j], removing the previous head of Q [i, j]

• So, the interval for the previous event is closed and a new interval is

started for the attribute Aj of process Pi. Thus Q [i, j] always has at most

one element at any time for all i and j

• After a new interval is started at a Q [i, j], the attribute values of the

intervals at the heads of all Q [i, j] are evaluated

• (i) whether any pair has matching attribute-values in which case a contextual link

is added, and

• (ii) whether the predicate Φ is satisfied

Algorithm for Periodic Concpred

Detection

• The algorithm periodically evaluates concurrent event

considering asynchrony in event reporting

• All events which occur during an epoch of period t (i.e.,

for events with ts<t) are captured considering a maximum

event reporting delay of Δ, and stored in the interval

queue Q [i, j].

• If an event arrives during (t+Δ) and ts>t, then it is made

to wait in the event queue, Q, before finally placing it in

Q [i, j]. The evaluation is pended for the current period.

Algorithm for Periodic Concpred

Detection (Cont’d)

• When an epoch ends at (t+Δ), the server temporarily

closes the last queued intervals in Q [i, j] with the current

time stamp, t, and then evaluates the attribute values of

the intervals at the heads of all Q [i, j] to detect

• (i) whether any pair has matching attribute-values in which case a

contextual link is added, and

• (ii) whether the predicate Φ is satisfied

• After the first round of evaluation, some intervals are

deleted from the heads of some of the Q [i, j] and another

round of comparison is carried out among the updated

heads of Q [i, j]

• This process is repeated until heads of all Q [i, j] are the latest

intervals for the current epoch

Algorithm for Periodic Concpred

Detection (Cont’d)

• Analysis of worst case time complexity

• The function ENQUEUE(e) which

• Enqueuing incoming events => O(p*a)

• The repeat loop => O(p*a*(ξ-1))

• Pair-wise comparison of the heads of Q [i, j] => (p*a)*(p*a - 1)/2

• Predicate evaluation => O(f(Φ)) where Φ is the predicate func.

• Detecting and removing time intervals => O(p*a)

• Worst case time complexity of the algorithm

• O((p*a*(ξ-1))(p*a + O(f(Φ)+(p*a)*(p*a - 1)/2)))

Performance Evaluation

• Simulation setup
• Every node has an id and a location attribute in the 2D simulation

territory

• Node 0 acts as the central server which keeps track of the

location of other nodes and constructs the context graph

• The territory is divided into 3x3 square grids which are

considered as enclosed physical areas, like rooms.

• Nodes in the same grid are considered as co-located and they are

linked with a co-location relation

• When nodes moves across grids, the co-location relations change

to trigger an event and the context map is updated accordingly

Performance Evaluation

• Simulation parameters

Parameters Values
Number of nodes, (N) 50, 100, 150, 200
Territory scale (m2) 1500
Mean link delay (ms) 5
Max link delay (ms) 100
Transmission radius (m) 100
Routing Policy Least hops
Mobility model Random Waypoint
Node speed V (in m/s) 5, 10
Pause time (ms) 10, 50
Period of Predicate Evaluation (ms) 100

Performance

N vs. UD (Pause time = 50 ms)

Higher pause time ensures lower UD

N vs. UD (Pause time = 10 ms)

Higher node speed ensures higher UD

UD (Update Delay): It is the average

time delay in milliseconds between the

time a node changes location and the

time the context map is updated.

Conclusion

• In this paper

• We introduce the context map to track the image of

the physical world, so that queries can be run against

the context map

• We give instances of real-world problems in pervasive

environments where complex timing relations are

involved in queries on the context map

• We show how to maintain the context map by

simulation and testbed experiments

Thank You!

Email: vaskar@ieee.org

csweizhu@comp.polyu.edu.hk

Classification of Event Detection

Techniques
Event Reporting Delay

Asynchronous (bounded

by Δ)

Instantaneous (Δ = 0)

Trigger-

based

Highway accident

detection, Damage

detection in long distance

oil pipelines, Undersea

cables, etc

Safety-critical applications,

(Air or Nuclear accident

detection, Tsunami

detection), Smart homes,

office, etc

Periodic

(Batch)

Wild-life / Habitat /

Volcano monitoring

Structure health

monitoring

Data Structure for Concpred

• Every event e is identified by a quadruple (Pi, Aj, Val,

ts), where

• Pi is the identifier of process i,

• Aj is the attribute j of Pi

• Val is the value of attribute Aj, and

• ts is the timestamp of occurrence of e

Data Structure for Concpred

• A contextual link is represented with a quadruple (Aj, Val,

ts, tf), where

• Aj is a context attribute and Val is the value of Aj during the

time interval which started at time ts and continued till tf

• Contextual links are created between a pair of processes

• iff a context attribute of one process is related to that of the

other process through some user define function, f.

Concurrent and Relative Events

• Concurrent Event

• concurrency event in terms of the location context of Tom, Bob

and the Laptop : (Tom.Loc = Bob.Loc = Laptop.Loc)

• Relative Event

• Consider a scenario where, after Tom enters his office, he has

invited both Bob and Alex to take a look at his slides. After that

they may go to the meeting together or separately.

• So, the relative event in this example can be specified as - Bob

and Alex enter Tom’s office AFTER Tom and they leave BEFORE

Tom

