QoS Monitoring and Analysis approach for publish/subscribe systems deployed on MANET

Elaborated by:

Nesrine KHABOU
University of Sfax
Tunisia

Nesrine.khabou@acm.org

Supervised by

Prof. Mohamed JMAIEL
Publish/subscribe systems

- A communication paradigm that allows producers to send messages to consumers in an asynchronous way via an event service.
- The event service is composed of brokers acting as intermediate entities between producers and consumers.

Mobile Ad hoc Networks

- MANETs is a collection of mobile nodes like (PDAs, Mobile phones, Personal computers) which are free to move in a random and unpredictable way.
Publish/Subscribe systems on MANET introduce several problems related to quality of service like Logical link degradation between brokers.
Objectives

- Maintain an acceptable quality of service of Publish/Subscribe systems deployed on MANETs
- Monitor logical link quality between neighboring brokers at middleware layer
- Detect logical link degradation between brokers at middleware layer
- Ensure the system survivability
<table>
<thead>
<tr>
<th>Network</th>
<th>Subscription language</th>
<th>Topology</th>
<th>Failure type</th>
<th>Failure source</th>
<th>F-D architecture</th>
<th>Message</th>
<th>Used technique</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMMA [MMH04] [MMH05]</td>
<td>Ad hoc</td>
<td>Subject based</td>
<td>Acyclic</td>
<td>Peer-to-peer</td>
<td>node mobility</td>
<td>distributed</td>
<td>Active</td>
<td>PING and monitoring and analysis</td>
</tr>
<tr>
<td>Hermes [PB02]</td>
<td>Ad hoc</td>
<td>Type based</td>
<td>Hybrid</td>
<td>Node and link</td>
<td>distributed</td>
<td>Active</td>
<td>heartbeat</td>
<td>Analysis</td>
</tr>
<tr>
<td>BenKhedher et al. [BKGD07]</td>
<td>Ad hoc</td>
<td>Content based</td>
<td>Hybrid</td>
<td>Connection and disconnection</td>
<td>distributed</td>
<td>Active and passive</td>
<td>heartbeat</td>
<td>Analysis</td>
</tr>
<tr>
<td>Jafarpour et al. [JMV08]</td>
<td>Ad hoc</td>
<td>Content based</td>
<td>Hybrid</td>
<td>Node and link</td>
<td>fixed threshold</td>
<td>Active and passive</td>
<td>heartbeat</td>
<td>Analysis</td>
</tr>
<tr>
<td>PADRES [FajLM05] [CJ10]</td>
<td>Static</td>
<td>Content based</td>
<td>Hybrid</td>
<td>Node and link</td>
<td>distributed</td>
<td>Active</td>
<td>PING and monitoring and analysis</td>
<td></td>
</tr>
<tr>
<td>HyperSub [YZH07]</td>
<td>Static</td>
<td>Content based</td>
<td>DHT</td>
<td>Node load</td>
<td>distributed</td>
<td>Active</td>
<td>Specific messages and threshold</td>
<td>Monitoring and analysis</td>
</tr>
<tr>
<td>Fail-aware [ZFF07]</td>
<td>Static</td>
<td>Content based</td>
<td>All types</td>
<td>Architecture</td>
<td>Passive</td>
<td>Fixed threshold</td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>Harmony [KKY+10] [YKK+09]</td>
<td>Dynamic</td>
<td>Subject based</td>
<td>Hybrid</td>
<td>Node and link</td>
<td>mobility</td>
<td>Hybrid</td>
<td>Active</td>
<td>PING and monitoring and analysis</td>
</tr>
</tbody>
</table>

Proposed approach

- Unable to detect link failure
- Can cause message loss especially in dynamic contexts
- False alarms due to the fixed interval designed for message reception
- High traffic due to message exchange

False alarms caused by fixed threshold values
Proposed approach

Monitoring module

Analysis module

Monitoring approach

Analysis approach

General context

Motivation

Objectives

Related work

Proposed approach

Approach evaluation

Conclusion & future works

Monitoring approach

Analysis approach

Proposed approach

Approach evaluation

Conclusion & future works

Monitoring module

Analysis module

Logical link

Nesrine KHABOU

PDP- February 15th 2012
Monitoring approach

- Extracting and collecting QoS values in order to evaluate the system state
- The considered QoS metric: Latency
- Monitoring module consists of two complementary components: an observer and a logger
- The monitoring module is based on **message interception** in order to extract latency values
Analysis approach

- **Reactive** and distributed approach

- Involves on each broker a failure detector responsible for analyzing QoS parameters and detecting failures

- Based on **statistical methods** and **Extreme Value Theory** (EVT) in order to detect logical link degradation between neighboring brokers at middleware layer

- Based on the comparison of QoS metric values to an adaptive threshold value

 - **If** the QoS metric values exceeds for a number of consecutive times (e.g. 2) the threshold value, **So** logical link degradation between neighboring brokers is detected

- Analysis is formed by 2 phases: a pretreatment phase and a treatment phase
Phase 1: pretreatment phase

1. **Approximation with empirical distribution**

 - Extraction of both max values and mean values from the period forming the latency serie
 - The max values are approximated to the Gumbel distribution using the *Extreme Value Theory*
 - The mean values are approximated to the Gaussian distribution using the test of *SHAPIRO* and *WILK*

2. **Initial threshold calculation**

 \[
 Th_{QoS_{max}} = x_0 - S \ln \left[\ln \left(\frac{1}{p} \right) \right]
 \]

 \[
 Th_{QoS_{mean}} = f \left(\phi^{-1}(p), \mu_{QoS_{mean}}, \sigma_{QoS_{mean}} \right)
 \]

3. **Failure detection in the pretreatment phase**

 - Adaptive threshold calculated through confidence levels
Phase 2: Treatment phase

- Initial max threshold value
- Initial mean threshold value

→ Applying the **Exponential Weighted Moving average (EWMA)** technique to generate adaptive threshold values

\[
Threshold_{QoS} = \lambda \times \sum_{j=0}^{i-1} ((1 - \lambda)^j QoS_{i-j}) + (1 - \lambda)^i \times Th_{QoS_{initial}}
\]

- Previous latency values
- Initial thresholds
Simulation parameters

- **Publish/Subscribe system**: SIENA (Scalable Internet Event Notification Architecture)
- **Network simulator**: JiST/SWANS (Java in Simulation Time/Scalable Wireless Ad hoc Network Simulator)

<table>
<thead>
<tr>
<th>Simulation parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field size</td>
<td>2000m x 3000m</td>
</tr>
<tr>
<td>Nodes number</td>
<td>200 nodes</td>
</tr>
<tr>
<td>Mobility model</td>
<td>Continuous Random Walk</td>
</tr>
<tr>
<td>Transmission range</td>
<td>300m</td>
</tr>
<tr>
<td>Routing protocol</td>
<td>AODV</td>
</tr>
<tr>
<td>Transport protocol</td>
<td>UDP</td>
</tr>
<tr>
<td>Message size</td>
<td>120 bytes</td>
</tr>
</tbody>
</table>

Nesrine KHABOU

PDP- February 15th 2012
Threshold measured via confidence level

Initial max threshold

Initial mean threshold

Violations →

Failures
Acceptable latency values

adaptive max threshold

adaptive mean threshold

Latency function of simulation time

Failure
The overhead of the 2 modules

Overhead introduced by monitoring and analysis modules

- Without monitoring nor analysis modules
- With monitoring and analysis modules

Message size (bytes)

Execution time (µs)
• A distributed approach for monitoring and analysis of publish/subscribe system deployed on MANET

• Analysis approach is based on statistical methods as well as Extreme Value Theory to detect logical link degradation at middleware layer

• The overhead of the proposed modules is negligible
Thank You!

Nesrine KHABOU