Raptor Codes for P2P Streaming

Philipp Eittenberger1, Todor Mladenov2, Udo Krieger1

1Faculty of Information Systems and Applied Computer Science
Otto-Friedrich University Bamberg, Germany

2Department of Information and Communications, Gwangju Institute of Science and Technology, Gwangju, South Korea

PDP’12, 15. February 2012
1. Introduction

2. Fountain Codes

3. Evaluation
P2P Video Streaming

Chunk Scheduling

\[p_i = \text{Peer}_i \]

\[j = \text{Chunk}_j \]

\[n = \text{Upload Capacity} \]
Assumptions

- Global knowledge of bandwidth distribution is available.
- Last mile is always the bandwidth bottleneck.
\[p_i = Peer_i \]
\[j = \text{Chunk}_j \]
\[n = \text{Upload Capacity} \]
Optimal scheduling algorithm is a NP-complete problem.
P2P Video Streaming
Fountain Code Enabled P2P Streaming

Proposed by Wu and Li [WuLi, 2005]

Benefit
Order of the pieces not important.
No content reconciliation needed.
P2P Video Streaming
Fountain Code Enabled P2P Streaming

\[p_i = Peer_i \]
\[j = Chunk_j \]
\[n = Upload Capacity \]

Proposed by Wu and Li [WuLi, 2005]

Benefit

Order of the pieces not important.

- No content reconciliation needed.
Fountain Codes

History

- Many implementations are based on variations of low-density parity-check (LDPC) codes (introduced by Gallager [Gallager, 1963])
- First construction of a efficient fountain code in 1998 (by Michael Luby; published 2002 [Luby, 2002])
- Raptor codes are an improvement over Luby transform codes (invented in late 2000 by Amin Shokrollahi [Shokrollahi, 2006])
- Raptor codes are the first practical class of a fountain code with near optimal error correction functionality
For a given vector \((x_1, \ldots, x_k)\) of source symbols, a fountain encoder produces a potentially limitless stream of encoded symbols \(y_1, y_2, \ldots\).

A symbol refers to a bit or a sequence of bits.

Fountain codes are governed by a probability distribution \(\mathcal{D}\) on the vector space \(\mathbb{F}_2^k\).
Encoding procedure for generating encoded symbol y_i:

1. Sample D to obtain a vector $(a_1, ..., a_k) \in \mathbb{F}_2^k$.
2. Calculate $y_j = \sum_i a_i x_i$.

- To decode the data, the receiver needs to be able to determine the corresponding vector $(a_1, ..., a_k)$.
- Therefore, an unique ID for might be used to serve as the seed for a PRNG.
Belief-Propagation Decoding

Repeats the following steps until failure in step 1 or the decoder stops successfully in step 4:

1. Find encoded symbol y_i of degree 1. If there is no encoded symbol of degree 1, decoding fails.
2. Decode $x_j = y_i$.
3. Let i_1, \ldots, i_l denote the indices of encoded symbols connected to x_j.
 Set $y_{i_s} = y_{i_s} + x_j$ for $s = 1, \ldots, l$, and remove x_j and all edges emanating from it.
4. Goto step 1, if there are unrecovered source symbols, else stop.
Belief-Propagation Decoding Problems

- There might not be any encoded symbols of degree one at some intermediate step of the decoding.
- Too many encoded symbols of degree one at some intermediate step, leading to many redundant encoded symbols and thus, to a large overhead.
- With high probability there is a fraction of source symbols that do not contribute to the values of any of the encoded symbols.
- These source symbols can never be recovered.
Raptor Codes

- Idea: Use a high rate code to precode the source symbols (= *intermediate symbols*).
- A LT code is applied to the intermediate symbols. There is still a small fraction of intermediate symbols, which can not be recovered.
- But they can be recovered by using an appropriate erasure decoding algorithm.
Raptor Codes

- Achieve linear time encoding and decoding performance.
- Have better overhead-failure curves than LT codes in practice.
- Decoding performance extremely close to the Shannon bounds.
- Linear block code
- Can be represented by its generator matrices.
Raptor Code R10

- Designed for encoding and decoding speed and a reasonable overhead-failure curve.
- Already adopted into a large number of different standards, e.g.:
 - 3GPP Multimedia Broadcast Multicast Service
 - IETF RFC 5053
 - DVB-IPTV
 - ...
- Source blocks of up to 8,192 source symbols and up to 65,536 encoded symbols.
Raptor Code R10: Implementation

\[e_{N \times 1} = G_{LT(1..N)} A_{L \times L}^{-1} d'_{L \times 1} = G_{LT(N..1)} c_{L \times 1} \]

\[t'_{K' \times 1} = G_{LT(1..K')} A_{M \times L}^{-1(T)} e'_{M \times 1} = G_{LT(1..K')} c_{L \times 1} \]

[Mladenov et al., 2011]
Outline

1. Introduction
2. Fountain Codes
3. Evaluation
Data Encoding & Encapsulation

Parameters to determine:
- Block size & symbol size.
- Number of repair symbols ε needed for a successful decoding (the overhead rate of the code).

Video Data Generation → Video Data Encoding → Transmission
Data Encoding & Encapsulation

Parameters to determine

- Block size & symbol size.
- Number of repair symbols ε needed for a successful decoding (= the overhead rate of the code).
Raptor implementation in plain Ansi-C (no assembly, no GPU instructions).

One CPU Thread (i7 2.8 GHz) for all encoding/decoding throughput measurements.

No corruption of encoded symbol (∼ handled by lower layers).

Unique range of encoding IDs per peer.

In total more than 1,000,000,000 tests were performed.
Introduction

Fountain Codes

Evaluation

Encoding Throughput

![3D Graph]

Throughput (in Mbit/s)

Symbol Size (in Byte)

Block Size (in Symbols)

Figure: Encoding Throughput
Decoding Throughput

Throughput (in Mbit/s)
Symbol Size (in Bytes)
Block Size (in Symbols)
Decoding Success

- $P(\text{Decoding Success})$ vs Number of Repair Symbols

- Graphs show the relationship between $P(\text{Decoding Success})$ and the number of repair symbols for different values of k.

- $k = 10$, $k = 100$, $k = 1000$, and $k = 2000$.

- Each graph represents a different k value, with the x-axis indicating the number of repair symbols and the y-axis showing the probability of decoding success.

- The graphs demonstrate how the probability of decoding success increases with the number of repair symbols for each k value.

- The plots illustrate the effectiveness of fountain codes in improving decoding success as the number of repair symbols increases.
Minimum amount of repair symbols necessary to achieve a decoding success of 99.9 %:

<table>
<thead>
<tr>
<th>k</th>
<th>10</th>
<th>32</th>
<th>64</th>
<th>100</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td># repair symbols</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>ε</td>
<td>110%</td>
<td>34.37 %</td>
<td>17.18 %</td>
<td>11 %</td>
<td>9.37 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>256</th>
<th>512</th>
<th>1000</th>
<th>1024</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td># repair symbols</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>ε</td>
<td>5.07%</td>
<td>2.92 %</td>
<td>1.6 %</td>
<td>1.56 %</td>
<td>0.85 %</td>
</tr>
</tbody>
</table>
Overhead Rate

Figure: Overhead Rate
Conclusion

Are Raptor Codes Suitable for P2P Streaming?

Necessary Prerequisites
- Necessary throughput rates can be achieved ✓
- Overhead rate is negligible for larger block sizes ✓
- Robustness (?)

Cons
- Introduce extra delay
- Additional computational complexity

Pros
- No content reconciliation (avoid chunk scheduling)
- Better/Easier utilization of “slow“ peers
- Lean On/Off-Push protocol (less protocol overhead)
Questions?

Philipp Eittenberger
philipp.eittenberger@uni-bamberg.de
Low-Density Parity-Check Codes, 1963.

[Luby, 2002] Michael Luby,

[Shokrollahi, 2006] Amin Shokrollahi,

[WuLi, 2005] C. Wu and B. Li,
[Mladenov et al., 2011]
T. Mladenov and S. Nooshabadi and K. Kim,