Minimizing Wait Latency
in Periodic P2P Hypercube Gossiping

Philipp Berndt philipp.berndt@tu-berlin.de
Complex and Distributed IT-Systems
Technische Universität Berlin

15 February 2012
PDP, Garching, Germany
Gossiping

- Elemental Dissemination Problem

- Aka. *Total Exchange*

- Communicate every Node's Information to all other nodes

- Periodic: Live streaming between Peers
Applications

- Audio Communication for MMVEs
- Decentralized Data Fusion for Object Tracking
- Real-time Business Process Intelligence
- Agent-based Management for Smart-Grids
- Shared Haptic Virtual Environments
- ...
Hypercube Gossiping

- H_m: Binary Hypercube of dimension m
 - 2^m nodes
 - Diameter m
 - Degree m
 - Gossip complexity m
Issue: Latency

- Real-time applications require current data

- Traversal time depends on
 - Underlay Network Delay
 - Overlay Hop Distance
 - Wait Latency
Underlay Network Delay

![Network Delay Distribution]

- **Median**: 45 ms
- **Mean**: 61 ms

Network Delay [ms]

0 40 80 120 160 200 240 280 320 360 400

Density

0.000 0.005 0.010 0.015 0.02
Overlay Distance

\[
c(L, h) = \binom{L}{h}
\]

<table>
<thead>
<tr>
<th>(c(L, h))</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Wait Latency
Timed Sequence Graphs

Minimizing Wait Latency in Periodic P2P Hypercube Gossiping
Wait Latency Measures

- **Path Latency** \(\Delta_{i,j} \)
- **Maximum Latency** \(\hat{\Delta} = \max (\Delta_{i,j}) \)
- **Overall Latency** \(\Delta_{tot} = \sum_{i=0}^{N-1} \sum_{j=0, j\neq i}^{N-1} \Delta_{i,j} \)
- **Mean Latency** \(\overline{\Delta} = \frac{\Delta_{tot}}{N \cdot (N - 1)} \)
- **Expected Mean Latency** \(E[\Delta] \)
Timing Modes

Random Mode:

\[\hat{\Delta}_{\text{Random}} = (L + 1)T \]
\[E[\Delta_{\text{Random}}] = \frac{1}{2} \left(2^{L-1}L + 2^L - 1 \right) T \]

Sync Mode:

\[\hat{\Delta}_{\text{Sync}} = L \cdot T \]
\[E[\Delta_{\text{Sync}}] = \frac{2^{L-2}L^2}{2^L - 1} T \]

Spliced Mode:

\[\hat{\Delta}_{\text{Spliced}} = (L - 1 + \frac{1}{k})T \]
\[E[\Delta_{\text{Spliced}}] = \frac{1}{2} \left(\frac{1}{2}L - 1 + \frac{1}{k} \right) \frac{2^L - 1}{2^L - 1} T \]

Chained Mode:

\[\hat{\Delta}_{\text{Chained}} = \left(\frac{L - 1}{k} + \frac{L - 1}{2} \right) \left(1 - \frac{2}{k} \right) T \]
\[E[\Delta_{\text{Chained}}] = \frac{1}{2} \left(\frac{1}{2}L \cdot 2^L - 1 \right) \frac{1}{k} + g(L) \left(1 - \frac{1}{k} \right) T \]

Chained Mode

Minimizing Wait Latency in Periodic P2P Hypercube Gossiping
Complementary Delays

\[\delta_a(x) \]

\[\delta_b(x) \]

\[\delta_a(x) + \delta_b(x) \]

\[((b - a) \mod T) + T \]

\[(b - a) \mod T \]
A Slice of Modulo Space

\[0 = T \mod T \]

\[b - a \]

\[[a, b]_T \]

\[b \]

\[a \]

\[z \in [a, b]_T \]

\[(b - z) \mod T \leq (b - a) \mod T \]

\[[a, b]_T := \begin{cases}
[a, b] & \text{for } a < b \\
[0, b] \cup [a, T] & \text{for } a > b \\
\{\} & \text{for } a = b
\end{cases} \]
Primary and Secondary Offsets

Offsets to reference node:

\[x_i := (\varphi_{\alpha+2(i+1),0} - \varphi_{\alpha,0}) \mod T, \; i \in [0..N^* - 1] \]

Offsets between any two nodes:

\[z_k \in \left\{ x_i | i \in [0..N^*] \right\} \cup \left\{ x_j - x_i | i, j \in [0..N^*] \land j > i \right\} \]
Primary Offsets

Case $b \geq a$

\[-z \leq -a\]
\[z \leq b\]

Case $b < a$

\[-z - T \cdot c \leq -a\]
\[z + T \cdot c \leq b + T\]

$c \in \{0; 1\}$
Secondary Offsets

Case $b \geq a$

Case $b < a$

Minimizing Wait Latency in Periodic P2P Hypercube Gossiping
The Shape of the Perfect Solution

Minimizing Wait Latency in Periodic P2P Hypercube Gossiping
Case z is primary offset:

Case $b > a$:

\[-z \quad -T \cdot p \quad \leq \quad -a\]

\[z \quad -T \cdot p \quad \leq \quad b\]

Case $b < a$:

\[-z \quad -T \cdot c \quad -T \cdot p \quad \leq \quad -a\]

\[z \quad +T \cdot c \quad -T \cdot p \quad \leq \quad b + T\]

\[c \in \{0, 1\}\]

Case z is secondary offset:

Case $b > a$:

\[-z \quad -T \cdot c \quad -T \cdot p \quad \leq \quad -a\]

\[z \quad +T \cdot c \quad -T \cdot p \quad \leq \quad b\]

\[c \in \{0, 1\}\]

Case $b < a$:

\[-z \quad -T \cdot c \quad -T \cdot p \quad \leq \quad -a\]

\[z \quad +T \cdot c \quad -T \cdot p \quad \leq \quad b + T\]

\[c \in \{0, 1, 2\}\]

\[w = 2^{L-(r-l)-2}\]

\[\text{obj} = T \sum w_e p_e\]
lp_solve

- Open Source Solver
- Michael Berlelaar Eindhoven University of Technology
- Enhanced and updated by various Individuals
- Linear and Mixed Integer Optimizer
 - Uses branch and bound algorithm
 - Presolve algorithms pre-processes the problem to reduce problem size and solve time.
 - Handles binary, integer and semi-continuous variables, and special ordered sets.
 - Customizable node and variable selection strategies.

Minimizing Wait Latency in Periodic P2P Hypercube Gossiping
Results

Reduction of Wait Latency in Crossing Mode for Different Network Sizes, 5 Minutes Time Limit for lp_solve

Number of Nodes

256 128 64 32 16 8

Percent Reduction with regard to Chained Mode
Summary & Future Work

- Hypercube gossiping facilitates efficient aggregation for a broad range of applications
- Real-time applications require highly current data
- High portion of latency due to wait delay, i.e. data sojourn times at intermediate nodes
- Depends on timing behavior of nodes
- Modeling of Wait-Latency as a MILP-Optimization Problem
- Significant reduction of wait latency
- Performance of the employed solver currently limits perfect solution to 64 nodes

Thank you!